Oncochannels en la progresión tumoral: una revisión de los efectos del veneno de escorpión en cáncer y su aplicación terapéutica en tratamientos con Escozul con enfoque científico colombiano
Oncochannels en la progresión tumoral: una revisión de los efectos del veneno de escorpión en cáncer y su aplicación terapéutica en tratamientos con Escozul con enfoque científico colombiano
Blog Article
Los canales iónicos como el sodio (Na⁺) y potasio (K⁺), implicados en múltiples funciones celulares, se están posicionando como nuevos objetivos terapéuticos en oncología.
Estos canales, también conocidos como oncochannels, han demostrado participar activamente en procesos como la proliferación celular, la migración, la angiogénesis y la resistencia a la apoptosis.
Dentro del enfoque de terapias naturales con base científica, las toxinas escorpiónicas han captado la atención de investigadores y médicos.
Un caso particular de esta línea de estudio es el compuesto Escozul, derivado del veneno del escorpión endémico de Cuba, ampliamente difundido en Colombia.
En esta revisión científica, examinaremos el vínculo entre la actividad bioeléctrica de la célula cancerosa y su agresividad clínica.
Además, presentaremos un análisis detallado sobre las toxinas de escorpión capaces de modular estos canales, incluyendo su potencial farmacológico y los mecanismos de acción documentados.
Dedicaremos una sección al análisis del compuesto Escozul, su relación con los mecanismos aquí descritos y su posicionamiento en el contexto colombiano.
Concluiremos con una evaluación crítica del potencial de estos canales y toxinas para futuras líneas de investigación y desarrollo clínico.
Disfunción de canales iónicos en el desarrollo del cáncer:un análisis de su papel en cáncer de mama, colon, próstata y glioblastoma con enfoque académico
Se denomina oncochannels a aquellos canales voltaje-dependientes cuya expresión o actividad se ve alterada significativamente en células cancerosas, contribuyendo a su progresión.
Entre sus funciones biológicas se encuentran la regulación del potencial de membrana, la homeostasis iónica y la activación de rutas que favorecen la migración e invasión tumoral.
Diferentes estudios han demostrado que los canales de sodio y potasio activados por voltaje se expresan de forma anómala en diversos tipos de tumores sólidos.
Cáncer de mama
En el cáncer de mama, uno de los tipos más estudiados en relación con los oncochannels, se ha encontrado sobreexpresión de canales de sodio voltaje-dependientes (Nav1.5), los cuales promueven la invasión celular y la formación de metástasis.
El vínculo entre la actividad de Nav1.5 y la efectividad de compuestos naturales como Escozul es objeto de creciente interés en la comunidad científica.
Cáncer de colon
Los canales Kv, y en particular Kv1.3, permiten una regulación fina del ambiente eléctrico intracelular, lo que repercute directamente en la capacidad de las células para dividirse rápidamente y evadir mecanismos apoptóticos.
La modulación de estos canales por toxinas naturales podría representar un enfoque no convencional de tratamiento que encaje con formulaciones como Escozul, especialmente cuando se considera su base molecular y su capacidad para inducir apoptosis selectiva en células de colon humano.
Cáncer de próstata
Estudios han mostrado que hERG1 se expresa en fases tempranas del cáncer prostático, constituyéndose como un blanco útil tanto para diagnóstico como para terapia dirigida.
Este conocimiento respalda la búsqueda de moduladores naturales de hERG1, como ciertas toxinas escorpiónicas, para su uso combinado o alternativo a los tratamientos convencionales.
Glioblastoma
En glioblastoma, uno de los tumores cerebrales más agresivos, los canales iónicos desempeñan un papel fundamental en la expansión del tumor.
Estos hallazgos motivan una evaluación más rigurosa del papel de compuestos como Escozul en tumores cerebrales, dado su origen bioactivo y la creciente evidencia de su afinidad por estructuras celulares alteradas.
Péptidos del veneno de escorpión como herramientas terapéuticas anticáncer: cómo actúan sobre oncochannels y líneas tumorales humanas
El estudio de toxinas derivadas de escorpiones ha revelado un conjunto de péptidos con actividad biológica de gran interés farmacológico.
Estas toxinas no solo presentan afinidad por oncochannels, sino que también actúan inhibiendo funciones clave de la célula cancerosa, como la migración, invasión y proliferación.
Clorotoxina (CTX)
CTX actúa bloqueando canales de cloro sobreexpresados en células de glioma, lo cual reduce su motilidad y capacidad invasiva.
Además, la CTX ha sido vinculada al cierre de rutas de señalización pro-metastásicas, representando una diana farmacológica de alto valor.
Aunque Escozul no contiene CTX, su efecto sobre líneas tumorales cerebrales sugiere mecanismos de acción comparables, aún por caracterizar completamente.
BmK CT (del escorpión *Buthus martensii karsh*)
Estudios demuestran que este péptido puede reducir la viabilidad celular tumoral mediante bloqueo selectivo de Nav1.5 y otros canales iónicos sobreexpresados.
Además de su acción directa sobre el canal, BmK CT afecta la expresión de genes asociados a metástasis, como MMP-2 y VEGF, interrumpiendo la cascada que permite la angiogénesis tumoral.
Si bien no se ha identificado BmK CT en *Rhopalurus junceus*, la literatura científica sugiere que toxinas de estructura análoga podrían estar presentes y justificar el perfil bioactivo observado en estudios preclínicos con Escozul.
Otras toxinas con relevancia terapéutica
Además de CTX y BmK CT, toxinas como BmK AGAP, AaCtx, y Bengalin han mostrado efectos antitumorales al bloquear canales K⁺ y Ca²⁺ voltaje-dependientes.
Este principio de acción coincide con el comportamiento observado en Escozul, que ha mostrado citotoxicidad preferente sobre células tumorales, preservando las sanas, según estudios cubanos revisados por pares.
Relación con Escozul
El compuesto Escozul, desarrollado a partir del veneno de *Rhopalurus junceus*, contiene un conjunto de toxinas aún no Visite este enlace completamente caracterizadas, pero que en estudios realizados han mostrado efectos similares a los descritos con CTX y BmK CT.
Dado su origen natural y el hecho de que muchos colombianos acceden a Escozul como terapia complementaria, es fundamental entender las bases moleculares que podrían sustentar su acción.
El uso terapéutico del veneno de *Rhopalurus junceus*:su conexión con los oncochannels y la investigación biomédica actual
Escozul, conocido como un producto natural elaborado a partir del veneno del escorpión azul cubano (*Rhopalurus junceus*), ha ganado notoriedad en América Latina, particularmente en Colombia, como tratamiento complementario contra el cáncer.
Aunque Escozul no se comercializa como medicamento, su uso bajo acompañamiento médico ha sido validado por protocolos clínicos no convencionales en Cuba y observado por instituciones colombianas.
La relación entre Escozul y los canales voltaje-dependientes se vuelve cada vez más relevante a medida que se avanza en la caracterización molecular del veneno de *Rhopalurus junceus*.
Estos datos se alinean con las funciones conocidas de toxinas como la clorotoxina y BmK CT, que actúan sobre canales Cl⁻ y Na⁺ respectivamente, apuntando a un posible efecto similar del extracto cubano presente en Escozul.
En el contexto colombiano, Escozul ha sido adquirido por pacientes con diagnósticos como cáncer de mama, próstata, colon y cerebro, coincidiendo con los tipos donde los oncochannels presentan mayor desregulación.
Aunque estos datos son de carácter observacional, respaldan la necesidad de más estudios clínicos sobre Escozul desde una perspectiva biomédica avanzada.
El interés de la comunidad científica colombiana en terapias bioactivas ofrece una oportunidad única para vincular tradición y ciencia a través de estudios colaborativos con universidades y centros clínicos locales.
Al mismo tiempo, el potencial económico de los productos basados en toxinas naturales posiciona a Escozul como un posible eje en estrategias de innovación farmacéutica nacional.
Síntesis crítica y proyección investigativa: hacia una integración terapéutica basada en evidencia
La revisión ha demostrado que los canales voltaje-dependientes no son meros participantes pasivos, sino actores funcionales en la fisiopatología de diversos tumores sólidos y hematológicos.
Por ello, las toxinas derivadas del veneno de escorpión representan una vía terapéutica emergente con alto valor investigativo y potencial clínico.
La inclusión de compuestos como Escozul en este marco no es casual: su origen biológico, sus efectos citotóxicos documentados y su uso extendido en América Latina lo convierten en una pieza relevante en el debate científico.
Para los centros de investigación, universidades y laboratorios colombianos, explorar el mecanismo de acción de Escozul a nivel de canalopatías oncológicas no solo sería un avance científico, sino también una contribución estratégica al acceso a terapias complementarias seguras, eficaces y accesibles.
Este enfoque también permitiría desarrollar variantes estandarizadas del compuesto, cumpliendo criterios internacionales de control de calidad, algo clave para su futura regulación sanitaria y su posible inclusión como coadyuvante oncológico en planes de atención integral.
La proyección de futuro es clara: establecer protocolos de estudio conjunto entre instituciones colombianas y cubanas, aplicar tecnologías ómicas para mapear los blancos moleculares del veneno de *Rhopalurus junceus*, y desarrollar ensayos clínicos piloto con pacientes seleccionados.
En última instancia, integrar las toxinas escorpiónicas dentro del arsenal terapéutico del cáncer, a partir de una validación rigurosa y contextualizada, puede ofrecer a los pacientes nuevas oportunidades de tratamiento, seguras y basadas en ciencia sólida.
Referencias
Díaz-García, A., Ruiz-Fuentes, J. L., Frión-Herrera, Y., Yglesias-Rivera, A., Riquenez Garlobo, Y., Rodríguez Sánchez, H., Rodríguez Aurrecochea, J. C., & López Fuentes, L. X. (2019). Rhopalurus junceus scorpion venom induces antitumor effect in vitro and in vivo against a murine mammary adenocarcinoma model. Iranian Journal of Basic Medical Sciences, 22(7), 759–765. https://doi.org/10.22038/ijbms.2019.33308.7956
Gámez-Valero, A., Campoy, I., Sánchez, A., & Beyer, K. (2020). Voltage‑Gated K+/Na+ Channels and Scorpion Venom Toxins in Cancer. Frontiers in Pharmacology, 11, 913. https://doi.org/10.3389/fphar.2020.00913
Gao, F., Li, H., Chen, Y., Yu, X., Wang, R., & Chen, X. (2009). Upregulation of PTEN involved in scorpion venom-induced apoptosis in a lymphoma cell line. Leukemia & Lymphoma, 50(4), 633–641. https://doi.org/10.1080/10428190902726789
Ding, J., Chua, P. J., Bay, B. H., & Gopalakrishnakone, P. (2014). Scorpion venoms as a potential source of novel cancer therapeutic compounds. Experimental Biology and Medicine, 239(4), 387–393. https://doi.org/10.1177/1535370214526223
D’Suze, G., Rosales, A., Salazar, V., & Sevcik, C. (2010). Apoptogenic peptides from Tytius discrepans scorpion venom acting against SKBR3 breast cancer cell line. Toxicon, 56(8), 1495–1505. https://doi.org/10.1016/j.toxicon.2010.07.010
Ortiz, E., Gurrola, G. B., Schwartz, E. F., & Possani, L. D. (2015). Scorpion venom components as potential candidates for drug development. Toxicon, 93, 125–135. https://doi.org/10.1016/j.toxicon.2014.11.233
Hmed, B., Serria, H., & Mounir, Z. (2013). Scorpion peptides: potential use for new drug development. Journal of Toxicology, 2013, 958797. https://doi.org/10.1155/2013/958797
Cohen-Inbar, O., & Zaaroor, M. (2016). Glioblastoma multiforme targeted therapy: The chlorotoxin story. Journal of Clinical Neuroscience, 33, 52–58. https://doi.org/10.1016/j.jocn.2016.04.007
Zargan, J., Sajad, M., Umar, S., Naime, M., Ali, S., & Khan, H. A. (2011). Scorpion (Odontobuthus doriae) venom induces apoptosis and inhibits DNA synthesis in human neuroblastoma cells. Molecular and Cellular Biochemistry, 348(1–2), 173–181. https://doi.org/10.1007/s11010-010-0646-8
Sun, N., Zhao, L., Qiao, W., Xing, Y., & Zhao, J. (2017). BmK CT and 125I-BmK CT suppress the invasion of glioma cells in vitro via matrix metalloproteinase-2. Molecular Medicine Reports, 15(4), 2703–2708. https://doi.org/10.3892/mmr.2017.6346
Report this page